Data Capture Questionnaire

Presentation to RASC Stratospheric Platform Earth Science Workshop

By Dr. Alexey A. Pankine Global Aerospace Corporation http://www.gaerospace.com/

19 June 2002

Introduction

- Future technology development needs to be driven by scientific requirements.
- For the rest of the day we will work in groups on science requirements that define desired stratospheric platform performance.
- Questionnaire helps guide your input.

Platform Requirements Flow

Sample Questionnaire, p.1

Group: Atmospheric Chemistry InitialsAAP	
--	--

Use the following table to briefly describe the measurements needed to answer key science questions. ...

Key Science Questions	What measurements are needed to answer these questions?
How is stratospheric ozone changing, as the abundance of ozone-destroying chemicals decreases and new substitutes increases?	Ozone profiles in tropics from the troposphere up to 35 km
Other science questions can be listed here	

For each measurement create a Measurement Requirements (green) page.

Sample Questionnaire, p.2

Required Measurement:(ozo ne profiles
------------------------	-----------------

Table 1. Platform performance requirements dictated by the Required Measurement:

Spatial charac teristics of the measurement:		
Desired horizontal coverage	Tropics, between 15N and 15 S	
Desired horizontal resolution within the coverage region	5; latitude, 3° longitude	
Desired vertical coverage	From troposphere to 35 km	
Desired vertical resolution	100 m	
Spatial accuracy	1°	

Sample Questionnaire, p.2 (cont.)

Temporal characteristics of the measurement:		
Flight duration	2 month	
Frequency of observations during the flight	Every 2 hours day and night	
Simultaneity with other observations	All platforms make simultaneous observations	
Other:		

For each Required Measurement page create one (or several) Instrument Approach (blue) page(s).

Sample Questionnaire, p.3

Instrument Approach:L	imb scannir	ng instrument_	
-----------------------	-------------	----------------	--

Table 1. Platform performance requirements dictated by the Instrument Approach: (consider both current and fu ture Gnext 30 years Ginstruments):

Safe payload recovery	Crucial (expensive instrument)
Useful science pay load mass	At least 200 kg
Power draw (include temporal profile if possible)	100 W continuous
Pointing accuracy, in cluding: Platform attitude control; Platform attitude know ledge.	Attitude knowledge within 1; for instrument pointing
Position accuracy, including: Platform position control; Platform position know ledge.	Position knowledge within 1 km

Sample Questionnaire, p.3 (cont.)

Calibration (In flight, via ground truth, pre/post flight)	In flight, every 10 days
Data storage and relay	10 Mbytes/day storage
Coordination between platforms	2 platforms make remote measurements of the same atmospheric region
Other	

Sample Questionnaire, p.4

Breakout Groups

Atmospheric Chemistry (130)

William S. Heaps, Chair

William H. Brune

Elliot Weinstock

Randy Kawa

Arlyn Andrews

Alexey Pankine

Geomagnetism (Lobby)

Michael Purucker, Chair

Yury Tsvetkov

Jim Heirtzler

Gunther Kletetschka

Patrick T. Taylor

Dimitar Ouzounov

Jeff Love

Kerry Nock

Earth Radiation Balance (Conference Room)

Zhanqing Li, Chair

Albert Arking, Co-Chair

Wenying Su

Ellsworth G. Dutton

Rachel Pinker

Seiji Kato

Dave Atlas

Jay Herman

Lee Harrison

Thomas Vonder Haar

Matthew Heun

Suggested Plan for Breakout Sessions

- 10:30-11:00 Science questions
- 11:00-12:00 Measurements
- 13:00-14:30 Instrument approaches
- 14:30-15:30 Prepare group report
 - text
 - viewgraphs
 - PowerPoint presentation

11